Using Whole-Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila melanogaster

نویسندگان

  • Ulrike Ober
  • Julien F. Ayroles
  • Eric A. Stone
  • Stephen Richards
  • Dianhui Zhu
  • Richard A. Gibbs
  • Christian Stricker
  • Daniel Gianola
  • Martin Schlather
  • Trudy F. C. Mackay
  • Henner Simianer
چکیده

Predicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP) genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress resistance and startle response in Drosophila melanogaster, using ∼2.5 million SNPs determined by sequencing the Drosophila Genetic Reference Panel population of inbred lines. We constructed a genomic relationship matrix from the SNP data and used it in a genomic best linear unbiased prediction (GBLUP) model. We assessed predictive ability as the correlation between predicted genetic values and observed phenotypes by cross-validation, and found a predictive ability of 0.239±0.008 (0.230±0.012) for starvation resistance (startle response). The predictive ability of BayesB, a Bayesian method with internal SNP selection, was not greater than GBLUP. Selection of the 5% SNPs with either the highest absolute effect or variance explained did not improve predictive ability. Predictive ability decreased only when fewer than 150,000 SNPs were used to construct the genomic relationship matrix. We hypothesize that predictive power in this population stems from the SNP-based modeling of the subtle relationship structure caused by long-range linkage disequilibrium and not from population structure or SNPs in linkage disequilibrium with causal variants. We discuss the implications of these results for genomic prediction in other organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic basis of transcriptome diversity in Drosophila melanogaster.

Understanding how DNA sequence variation is translated into variation for complex phenotypes has remained elusive but is essential for predicting adaptive evolution, for selecting agriculturally important animals and crops, and for personalized medicine. Gene expression may provide a link between variation in DNA sequence and organismal phenotypes, and its abundance can be measured efficiently ...

متن کامل

Genetic architecture of quantitative traits in mice, flies, and humans.

We compare and contrast the genetic architecture of quantitative phenotypes in two genetically well-characterized model organisms, the laboratory mouse, Mus musculus, and the fruit fly, Drosophila melanogaster, with that found in our own species from recent successes in genome-wide association studies. We show that the current model of large numbers of loci, each of small effect, is true for al...

متن کامل

Assembly and annotation of a BAC clone from a newly sequenced genome of Anopheles funestus

Whole genome sequencing of disease vectors such as Aedes aegypti, Anopheles gambiae, and recently Anopheles funestus are enabling scientists to identify and investigate regions involved in the genetic plasticity of these vectors in order to formulate new disease control strategies. In the current study, sequence data from a single Anopheles funestus BAC clone is examined in order to predict and...

متن کامل

Combining genome-wide methods to investigate the genetic complexity of courtship song variation in Drosophila melanogaster.

Little is currently known about the genetic complexity of quantitative behavioral variation, the types of genes involved, or their effects on intermediate phenotypes. Here, we conduct a genome-wide association study of Drosophila melanogaster courtship song variation using 168 sequenced inbred lines, and fail to find highly significant associations. However, by combining these data with results...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012